organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Diisopropyl-4,5-dimethylimidazolium benzenesulfonate

Kamal Sweidan,^a* Eyad Mallah,^b Qutaiba Abu-Salem,^c Manfred Steimann^d and Cäcilia Maichle-Mössmer^d

^aDepartment of Chemistry, The University of Jordan, Amman, Jordan, ^bFaculty of Pharmacy and Medical Science, Petra University, PO Box 961343, Amman 11196, Jordan, ^cDepartment of Chemistry, Faculty of Science, University of Al al-Bayt, Al-Mafraq, Jordan, and ^dInstitut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany Correspondence e-mail: kamal_sweidan@hotmail.com

Received 13 July 2011; accepted 26 July 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.105; data-to-parameter ratio = 15.7.

In the title salt, $C_{11}H_{21}N_2^+ \cdot C_6H_5O_3S^-$, which has two cationanion pairs in the asymmetric unit, the two imidazolium cations are linked to two separate acceptor O atoms of one of the benzenesulfonate anions through aromatic $C-H \cdots O$ hydrogen bonds, while the second anion is unassociated.

Related literature

For the structures of similar compounds, see: Sweidan et al. (2009); Kuhn et al. (2007); Grishina et al. (2011). For the synthesis of the starting material, see: Kuhn & Kratz (1993).

Experimental

Crystal data $C_{11}H_{21}N_2^+ \cdot C_6H_5O_3S^-$

 $M_r = 338.46$

Triclinic, $P\overline{1}$	V = 1784.3 (3) Å ³
a = 8.8691 (9) Å	Z = 4
b = 14.1494 (15) Å	Mo $K\alpha$ radiation
c = 14.3200 (14) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\alpha = 87.082 \ (8)^{\circ}$	T = 173 K
$\beta = 88.326 \ (8)^{\circ}$	$0.40 \times 0.15 \times 0.15$ mm
$\gamma = 83.988 \ (8)^{\circ}$	

Data collection

Stoe IPDS II CCD diffractometer 5925 reflections with $I > 2\sigma(I)$ 25481 measured reflections $R_{\rm int} = 0.093$ 7264 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of
$wR(F^2) = 0.105$	independent and constrained
S = 1.13	refinement
7264 reflections	$\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$
464 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots O11^{i}$	0.95	2.30	3.198 (3)	157
C01−H01···O13	0.95	2.25	3.040 (3)	141

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support by the Deutsche Forschungsgemeinschaft (DFG) and the Higher Council for Science and Technology of Jordan (HCST) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2131).

References

- Grishina, A. A., Polyakova, S. M., Kunetskiy, R. A., Cisarova, I. & Lyapkalo, L. M. (2011). Chem. Eur. J. 17, 96-100.
- Kuhn, N. & Kratz, Th. (1993). Synthesis, pp. 561-562.
- Kuhn, N., Maichle-Mössmer, C., Steimann, M. & Sweidan, K. (2007). Z. Naturforsch. Teil B, 62, 101-103.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2008). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Sweidan, K., Kuhn, N. & Maichle-Mössmer, C. (2009). Z. Kristallogr. New Cryst. Struct. 224, 295-296.

Acta Cryst. (2011). E67, o2205 [doi:10.1107/S1600536811030236]

1,3-Diisopropyl-4,5-dimethylimidazolium benzenesulfonate

K. Sweidan, E. Mallah, Q. Abu-Salem, M. Steimann and C. Maichle-Mössmer

Comment

Due to the strongly basic character of *N*-heterocyclic carbenes, their reactions with acidic compounds usually produce 2H-imidazolium cation pairs. The formation of stable C—H···O bonds between the components of these compounds may act as an additional stabilizing factor in their crystal structures (Kuhn *et al.*, 2007). The structures have shown that these pairs are linked by imidazolium aromatic C—H···O hydrogen bonds as observed commonly in imidazolium salts (Sweidan *et al.*, 2009). However, the crystal structure of 1,3-di-*tert*-butyl-4,5-dimethylimidazolium trifluoromethanesulfonate showed the absence of intermolecular hydrogen bonding between the imidazolium cation and the trifluoromethanesulfonate anion (Grishina *et al.*, 2011).

The structure of the title compound, $C_{11}H_{21}N_2^+C_6H_5O_3S^-$ (Fig. 1), which has two cation–anion pairs in the asymmetric unit, reveals the presence of intermolecular aromatic C—H···O_{sulfonate} hydrogen-bonding interactions between the two imidazolium cation moieties and two separate oxygen atoms of one of the benzenesulfonate anion moieties (Table 1, Fig. 1). Surprisingly, the second anion is not involved in any intermolecular hydrogen bonding, which may be attributed to the steric crowding effect of the cation ring.

Experimental

The title compound was prepared by slow addition of benzenesulfonic acid (0.425 g, 2.67 mmol) to a solution containing 0.481 g (2.67 mmol) of 1,3-diisopropyl-4,5-dimethyl-4,5-dimethylimidazol-2-ylidene (see Kuhn & Kratz, 1993), in 20 ml of dry Et_2O at -25° C. After stirring overnight at room temperature, the precipitate was filtered off, washed with dry Et_2O and dried under reduced pressure. Yield: 0.814 g (90%). This solid was recrystallized from CH_3COCH_3/Et_2O as colorless crystals.

Refinement

Hydrogen atoms were included in the refinement at calculated positions and some were allowed to refine isotropically while the remainder were included at calculated positions with C—H = 0.95-1.00 Å and with $U_{iso}(H) = 1.2U_{eq}(aromatic C)$ or $1.5U_{eq}(aliphatic C)$, using a riding-model approximation.

Figures

Fig. 1. The molecular structure of the two cation–anion pairs in the asymmetric unit of the title molecule showing the atom numbering scheme, with 20% probability displacement ellipsoids for non-H atoms. Inter–species hydrogen bonds are shown as dashed lines

1,3-Diisopropyl-4,5-dimethylimidazolium benzenesulfonate

Crystal data

$C_{11}H_{21}N_2^+ C_6H_5O_3S^-$	Z = 4
$M_r = 338.46$	<i>F</i> (000) = 728
Triclinic, <i>P</i> T	$D_{\rm x} = 1.260 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.8691 (9) Å	Cell parameters from 8000 reflections
b = 14.1494 (15) Å	$\theta = 3.2 - 26.4^{\circ}$
c = 14.3200 (14) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\alpha = 87.082 \ (8)^{\circ}$	<i>T</i> = 173 K
$\beta = 88.326 \ (8)^{\circ}$	Plate, colourless
$\gamma = 83.988 \ (8)^{\circ}$	$0.40 \times 0.15 \times 0.15 \text{ mm}$
V = 1784.3 (3) Å ³	

Data collection

Stoe IPDS II CCD diffractometer	5925 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.093$
graphite	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
φ scans	$h = -11 \rightarrow 9$
25481 measured reflections	$k = -17 \rightarrow 17$
7264 independent reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.105$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0217P)^{2} + 0.9275P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} = 0.001$
7264 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
464 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0089 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.43909 (5)	0.75074 (4)	0.39894 (3)	0.02465 (13)
N2	0.62257 (18)	0.61645 (11)	0.67491 (11)	0.0239 (3)
N5	0.44232 (18)	0.57763 (11)	0.76972 (11)	0.0239 (3)
011	0.39575 (19)	0.65641 (11)	0.38435 (10)	0.0380 (4)
012	0.37379 (19)	0.82319 (12)	0.33265 (10)	0.0392 (4)
013	0.60130 (17)	0.75129 (12)	0.40749 (11)	0.0407 (4)
C1	0.5287 (2)	0.55055 (14)	0.69578 (13)	0.0236 (4)
H1	0.5239	0.4939	0.6636	0.028*
C3	0.5962 (2)	0.68882 (14)	0.73746 (14)	0.0274 (4)
C4	0.4838 (2)	0.66389 (14)	0.79749 (14)	0.0271 (4)
C51	0.3196 (2)	0.52557 (15)	0.81440 (14)	0.0278 (4)
H51	0.2354	0.5736	0.8340	0.033*
C11	0.3598 (2)	0.78283 (14)	0.51005 (13)	0.0243 (4)
C12	0.2803 (2)	0.72031 (15)	0.56465 (13)	0.0275 (4)
H12	0.2693	0.6588	0.5437	0.033*
C13	0.2164 (2)	0.74776 (16)	0.65032 (14)	0.0332 (5)
H13	0.1614	0.7051	0.6876	0.040*
C14	0.2328 (3)	0.83630 (17)	0.68102 (15)	0.0406 (6)
H14	0.1885	0.8549	0.7393	0.049*
C15	0.3137 (3)	0.89853 (17)	0.62733 (17)	0.0472 (6)
H15	0.3263	0.9593	0.6494	0.057*
C16	0.3769 (3)	0.87242 (16)	0.54092 (16)	0.0376 (5)
H16	0.4312	0.9155	0.5036	0.045*
C21	0.7465 (2)	0.61059 (15)	0.60282 (14)	0.0287 (4)
H21	0.7546	0.6761	0.5748	0.034*

C22	0.8952 (3)	0.57618 (19)	0.64945 (17)	0.0431 (6)
H22A	0.9131	0.6189	0.6988	0.065*
H22B	0.9783	0.5758	0.6028	0.065*
H22C	0.8900	0.5116	0.6768	0.065*
C23	0.7120 (3)	0.54755 (16)	0.52511 (15)	0.0357 (5)
H23A	0.6156	0.5723	0.4969	0.054*
H23B	0.7049	0.4827	0.5510	0.054*
H23C	0.7934	0.5470	0.4773	0.054*
C31	0.6752 (3)	0.77647 (17)	0.72980 (19)	0.0374 (5)
H60	0.655 (3)	0.811 (2)	0.673 (2)	0.051 (8)*
H61	0.783 (3)	0.7619 (19)	0.7328 (18)	0.049 (7)*
H62	0.652 (3)	0.815 (2)	0.784 (2)	0.061 (8)*
C41	0.4125 (3)	0.71378 (18)	0.87908 (17)	0.0367 (5)
H63	0.437 (3)	0.681 (2)	0.936 (2)	0.054 (8)*
H64	0.309 (4)	0.723 (2)	0.877 (2)	0.058 (8)*
H65	0.451 (3)	0.777 (2)	0.8844 (19)	0.058 (8)*
C53	0.2571 (3)	0.46273 (18)	0.74510 (16)	0.0386 (5)
H53A	0.2201	0.5018	0.6904	0.058*
H53B	0.1735	0.4313	0.7748	0.058*
H53C	0.3376	0.4145	0.7254	0.058*
C52	0.3776 (3)	0.46925 (17)	0.90138 (15)	0.0392 (5)
H52A	0.4158	0.5124	0.9444	0.059*
H52B	0.4596	0.4211	0.8838	0.059*
H52C	0.2947	0.4379	0.9322	0.059*
S2	-0.08093 (6)	0.73424 (4)	-0.07445 (3)	0.02813 (13)
O21	-0.19080 (19)	0.66586 (13)	-0.07226 (12)	0.0459 (4)
022	0.02063 (18)	0.72912 (14)	-0.15586 (10)	0.0472 (4)
023	-0.14735 (18)	0.83069 (11)	-0.05920 (11)	0.0384 (4)
N02	0.75192 (18)	0.90033 (11)	0.17822 (11)	0.0247 (3)
N05	0.90956 (18)	0.87415 (12)	0.29144 (12)	0.0276 (4)
C01	0.7870 (2)	0.84590 (14)	0.25474 (14)	0.0268 (4)
H01	0.7331	0.7951	0.2791	0.032*
C03	0.8562 (2)	0.96711 (13)	0.16604 (14)	0.0252 (4)
C04	0.9551 (2)	0.95119 (14)	0.23694 (14)	0.0271 (4)
C011	0.0379 (2)	0.70085 (14)	0.02239 (13)	0.0253 (4)
C012	0.0905 (3)	0.60555 (15)	0.03882 (15)	0.0350 (5)
H012	0.0623	0.5593	-0.0013	0.042*
C013	0.1834 (3)	0.57763 (17)	0.11302 (17)	0.0419 (6)
H013	0.2173	0.5123	0.1246	0.050*
C014	0.2274 (3)	0.64522 (18)	0.17066 (15)	0.0394 (5)
H014	0.2915	0.6262	0.2217	0.047*
C015	0.1777 (3)	0.74003 (16)	0.15365 (14)	0.0343 (5)
H015	0.2090	0.7863	0.1927	0.041*
C016	0.0826 (2)	0.76818 (15)	0.08013 (13)	0.0281 (4)
H016	0.0480	0.8335	0.0692	0.034*
C031	0.8501 (3)	1.03796 (16)	0.08522 (16)	0.0321 (5)
Н54	0.856 (3)	1.0048 (17)	0.0264 (17)	0.034 (6)*
Н55	0.934 (3)	1.0736 (19)	0.0873 (17)	0.041 (7)*
H56	0.758 (3)	1.083 (2)	0.0841 (19)	0.053 (8)*

C021	0.6220 (2)	0.89358 (16)	0.11676 (14)	0.0309 (5)
H021	0.6537	0.9119	0.0513	0.037*
C022	0.4900 (3)	0.96410 (19)	0.14589 (18)	0.0433 (6)
H02A	0.5224	1.0283	0.1435	0.065*
H02B	0.4563	0.9472	0.2098	0.065*
H02C	0.4061	0.9623	0.1032	0.065*
C023	0.5808 (3)	0.79234 (17)	0.11832 (16)	0.0399 (5)
H02D	0.6694	0.7499	0.0990	0.060*
H02E	0.4982	0.7885	0.0752	0.060*
H02F	0.5481	0.7731	0.1818	0.060*
C041	1.0886 (3)	1.00083 (18)	0.25941 (19)	0.0377 (5)
H57	1.180 (3)	0.9550 (19)	0.2658 (18)	0.046 (7)*
H58	1.071 (3)	1.033 (2)	0.323 (2)	0.053 (8)*
H59	1.106 (3)	1.049 (2)	0.212 (2)	0.052 (8)*
C051	0.9840 (2)	0.83105 (16)	0.37810 (16)	0.0349 (5)
H051	1.0931	0.8432	0.3743	0.042*
C052	0.9770 (3)	0.72410 (16)	0.38417 (16)	0.0376 (5)
H05A	1.0251	0.6963	0.3280	0.056*
H05B	0.8709	0.7105	0.3888	0.056*
H05C	1.0306	0.6964	0.4396	0.056*
C053	0.9122 (3)	0.87818 (19)	0.46308 (17)	0.0491 (6)
H05D	0.9196	0.9468	0.4565	0.074*
H05E	0.9652	0.8518	0.5192	0.074*
H05F	0.8053	0.8665	0.4687	0.074*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0242 (2)	0.0278 (3)	0.0214 (2)	-0.00192 (19)	0.00511 (18)	-0.00097 (18)
N2	0.0237 (8)	0.0233 (8)	0.0245 (8)	-0.0002 (7)	-0.0032 (6)	-0.0021 (6)
N5	0.0248 (8)	0.0244 (8)	0.0221 (8)	0.0006 (7)	-0.0012 (6)	-0.0038 (6)
011	0.0511 (10)	0.0331 (8)	0.0314 (8)	-0.0104 (7)	0.0122 (7)	-0.0108 (6)
012	0.0466 (9)	0.0425 (9)	0.0258 (7)	0.0046 (7)	0.0014 (7)	0.0046 (6)
013	0.0248 (8)	0.0553 (10)	0.0410 (9)	-0.0039 (7)	0.0079 (7)	0.0037 (8)
C1	0.0247 (9)	0.0236 (9)	0.0221 (9)	0.0001 (8)	-0.0025 (7)	-0.0030 (7)
C3	0.0287 (10)	0.0232 (10)	0.0304 (10)	0.0012 (8)	-0.0078 (8)	-0.0055 (8)
C4	0.0271 (10)	0.0252 (10)	0.0290 (10)	0.0011 (8)	-0.0056 (8)	-0.0061 (8)
C51	0.0242 (10)	0.0321 (11)	0.0270 (10)	-0.0012 (8)	0.0027 (8)	-0.0049 (8)
C11	0.0241 (9)	0.0272 (10)	0.0209 (9)	0.0017 (8)	-0.0004 (7)	-0.0027 (7)
C12	0.0268 (10)	0.0306 (11)	0.0245 (9)	-0.0004 (8)	0.0006 (8)	-0.0007 (8)
C13	0.0323 (11)	0.0422 (13)	0.0228 (10)	0.0053 (10)	0.0033 (8)	0.0019 (9)
C14	0.0489 (14)	0.0454 (14)	0.0235 (10)	0.0134 (11)	0.0029 (9)	-0.0046 (9)
C15	0.0678 (17)	0.0313 (12)	0.0421 (13)	0.0043 (12)	-0.0037 (12)	-0.0166 (10)
C16	0.0499 (14)	0.0291 (11)	0.0342 (11)	-0.0050 (10)	0.0000 (10)	-0.0044 (9)
C21	0.0320 (11)	0.0258 (10)	0.0281 (10)	-0.0045 (8)	0.0055 (8)	0.0002 (8)
C22	0.0278 (11)	0.0550 (15)	0.0453 (13)	-0.0005 (11)	0.0034 (10)	-0.0026 (11)
C23	0.0460 (13)	0.0342 (12)	0.0271 (10)	-0.0067 (10)	0.0076 (9)	-0.0030 (9)
C31	0.0403 (14)	0.0303 (12)	0.0431 (14)	-0.0077 (10)	-0.0067 (11)	-0.0055 (10)

C41	0.0414 (14)	0.0351 (13)	0.0336 (12)	0.0010 (11)	0.0010 (10)	-0.0125 (10)
C53	0.0351 (12)	0.0487 (14)	0.0345 (11)	-0.0147 (10)	0.0016 (9)	-0.0057 (10)
C52	0.0455 (13)	0.0417 (13)	0.0303 (11)	-0.0058 (11)	-0.0010 (10)	0.0038 (10)
S2	0.0270 (3)	0.0364 (3)	0.0221 (2)	-0.0092 (2)	0.00347 (19)	-0.0028 (2)
O21	0.0448 (10)	0.0489 (10)	0.0483 (10)	-0.0236 (8)	-0.0089 (8)	-0.0003 (8)
O22	0.0375 (9)	0.0792 (13)	0.0236 (7)	-0.0018 (9)	0.0073 (7)	-0.0025 (8)
O23	0.0381 (9)	0.0389 (9)	0.0374 (8)	-0.0014 (7)	-0.0027 (7)	0.0012 (7)
N02	0.0255 (8)	0.0246 (8)	0.0239 (8)	-0.0040 (7)	0.0056 (6)	-0.0010 (6)
N05	0.0230 (8)	0.0285 (9)	0.0311 (9)	-0.0047 (7)	0.0015 (7)	0.0027 (7)
C01	0.0248 (10)	0.0272 (10)	0.0284 (10)	-0.0064 (8)	0.0028 (8)	0.0024 (8)
C03	0.0257 (10)	0.0200 (9)	0.0297 (10)	-0.0038 (8)	0.0094 (8)	-0.0036 (8)
C04	0.0261 (10)	0.0208 (9)	0.0342 (10)	-0.0032 (8)	0.0084 (8)	-0.0023 (8)
C011	0.0265 (10)	0.0295 (10)	0.0207 (9)	-0.0087 (8)	0.0063 (7)	-0.0014 (8)
C012	0.0434 (13)	0.0270 (11)	0.0363 (11)	-0.0103 (9)	0.0039 (10)	-0.0057 (9)
C013	0.0486 (14)	0.0306 (12)	0.0443 (13)	0.0013 (10)	0.0031 (11)	0.0067 (10)
C014	0.0369 (12)	0.0496 (14)	0.0296 (11)	0.0035 (11)	0.0006 (9)	0.0017 (10)
C015	0.0366 (12)	0.0400 (12)	0.0271 (10)	-0.0043 (10)	0.0018 (9)	-0.0087 (9)
C016	0.0332 (11)	0.0263 (10)	0.0248 (9)	-0.0026 (8)	0.0060 (8)	-0.0064 (8)
C031	0.0363 (12)	0.0275 (11)	0.0326 (11)	-0.0067 (10)	0.0091 (9)	0.0003 (9)
C021	0.0307 (11)	0.0398 (12)	0.0233 (9)	-0.0106 (9)	0.0011 (8)	0.0005 (8)
C022	0.0301 (12)	0.0508 (15)	0.0470 (14)	0.0000 (11)	-0.0022 (10)	0.0085 (11)
C023	0.0455 (13)	0.0461 (14)	0.0320 (11)	-0.0218 (11)	0.0046 (10)	-0.0076 (10)
C041	0.0290 (11)	0.0315 (12)	0.0532 (15)	-0.0081 (10)	0.0010 (10)	0.0003 (11)
C051	0.0255 (10)	0.0389 (12)	0.0404 (12)	-0.0082 (9)	-0.0064 (9)	0.0098 (10)
C052	0.0310 (11)	0.0379 (12)	0.0416 (12)	-0.0001 (9)	0.0003 (9)	0.0110 (10)
C053	0.0626 (17)	0.0488 (15)	0.0364 (13)	-0.0044 (13)	-0.0163 (12)	-0.0019 (11)

Geometric parameters (Å, °)

S1—O12	1.4478 (15)	S2—O21	1.4420 (16)
S1—O13	1.4483 (16)	S2—O22	1.4523 (15)
S1—O11	1.4537 (16)	S2—O23	1.4532 (17)
S1—C11	1.7816 (19)	S2—C011	1.781 (2)
N2—C1	1.331 (3)	N02—C01	1.332 (2)
N2—C3	1.392 (2)	N02—C03	1.391 (2)
N2—C21	1.484 (2)	N02—C021	1.484 (3)
N5—C1	1.337 (2)	N05—C01	1.328 (3)
N5—C4	1.391 (3)	N05—C04	1.395 (2)
N5—C51	1.489 (3)	N05—C051	1.495 (3)
С1—Н1	0.9500	С01—Н01	0.9500
C3—C4	1.360 (3)	C03—C04	1.356 (3)
C3—C31	1.485 (3)	C03—C031	1.490 (3)
C4—C41	1.487 (3)	C04—C041	1.490 (3)
C51—C52	1.517 (3)	C011—C016	1.388 (3)
C51—C53	1.519 (3)	C011—C012	1.391 (3)
C51—H51	1.0000	C012—C013	1.380 (3)
C11—C12	1.385 (3)	С012—Н012	0.9500
C11—C16	1.388 (3)	C013—C014	1.387 (4)
C12—C13	1.392 (3)	С013—Н013	0.9500

C12—H12	0.9500	C014—C015	1.379 (3)
C13—C14	1.372 (3)	C014—H014	0.9500
С13—Н13	0.9500	C015—C016	1.385 (3)
C14—C15	1.383 (4)	С015—Н015	0.9500
C14—H14	0.9500	С016—Н016	0.9500
C15—C16	1.394 (3)	C031—H54	0.98 (2)
C15—H15	0.9500	С031—Н55	0.94 (3)
С16—Н16	0.9500	С031—Н56	0.98 (3)
C21—C23	1.518 (3)	C021—C023	1.514 (3)
C21—C22	1.519 (3)	C021—C022	1.520 (3)
C21—H21	1.0000	C021—H021	1.0000
C22—H22A	0.9800	С022—Н02А	0.9800
С22—Н22В	0.9800	С022—Н02В	0.9800
C22—H22C	0.9800	С022—Н02С	0.9800
C23—H23A	0.9800	C023—H02D	0.9800
С23—Н23В	0.9800	С023—Н02Е	0.9800
С23—Н23С	0.9800	C023—H02F	0.9800
С31—Н60	0.94 (3)	С041—Н57	0.98 (3)
С31—Н61	0.96 (3)	C041—H58	1.04 (3)
C31—H62	0.97 (3)	C041—H59	0.96 (3)
C41—H63	0.94 (3)	C051—C053	1.510 (3)
C41—H64	0.92 (3)	C051—C052	1.519 (3)
C41—H65	1.00 (3)	C051—H051	1.0000
С53—Н53А	0.9800	С052—Н05А	0.9800
С53—Н53В	0.9800	С052—Н05В	0.9800
С53—Н53С	0.9800	С052—Н05С	0.9800
C52—H52A	0.9800	C053—H05D	0.9800
C52—H52B	0.9800	С053—Н05Е	0.9800
С52—Н52С	0.9800	C053—H05F	0.9800
O12—S1—O13	113.12 (10)	O21—S2—O22	113.55 (11)
012—S1—011	113.52 (10)	O21—S2—O23	113.47 (10)
O13—S1—O11	112.59 (10)	O22—S2—O23	112.47 (10)
O12—S1—C11	105.44 (9)	O21—S2—C011	105.64 (10)
O13—S1—C11	105.24 (9)	O22—S2—C011	104.85 (9)
011—S1—C11	106.02 (9)	O23—S2—C011	105.90 (9)
C1—N2—C3	109.23 (16)	C01—N02—C03	108.49 (17)
C1—N2—C21	126.08 (16)	C01—N02—C021	126.48 (17)
C3—N2—C21	124.44 (17)	C03—N02—C021	125.02 (16)
C1—N5—C4	108.81 (16)	C01—N05—C04	108.89 (17)
C1—N5—C51	125.99 (17)	C01—N05—C051	125.15 (17)
C4—N5—C51	125.19 (16)	C04—N05—C051	125.95 (17)
N2—C1—N5	108.40 (17)	N05—C01—N02	108.90 (17)
N2—C1—H1	125.8	N05—C01—H01	125.6
N5—C1—H1	125.8	N02—C01—H01	125.6
C4—C3—N2	106.58 (17)	C04—C03—N02	107.27 (17)
C4—C3—C31	130.40 (19)	C04—C03—C031	130.82 (19)
N2—C3—C31	122.91 (19)	N02—C03—C031	121.89 (19)
C3—C4—N5	106.98 (17)	C03—C04—N05	106.45 (17)
C3—C4—C41	129.8 (2)	C03—C04—C041	130.81 (19)

N5—C4—C41	123.20 (19)	N05-C04-C041	122.7 (2)
N5-C51-C52	110.01 (17)	C016—C011—C012	119.32 (19)
N5-C51-C53	110.63 (16)	C016—C011—S2	121.44 (16)
C52—C51—C53	112.06 (19)	C012—C011—S2	119.21 (16)
N5-C51-H51	108.0	C013—C012—C011	120.5 (2)
С52—С51—Н51	108.0	C013—C012—H012	119.7
C53—C51—H51	108.0	С011—С012—Н012	119.7
C12—C11—C16	120.16 (19)	C012—C013—C014	119.9 (2)
C12—C11—S1	120.90 (15)	С012—С013—Н013	120.1
C16—C11—S1	118.93 (16)	C014—C013—H013	120.1
C11—C12—C13	119.9 (2)	C015—C014—C013	119.8 (2)
C11—C12—H12	120.1	C015—C014—H014	120.1
C13—C12—H12	120.1	C013—C014—H014	120.1
C14—C13—C12	120.2 (2)	C014—C015—C016	120.5 (2)
C14—C13—H13	119.9	C014—C015—H015	119.8
C12—C13—H13	119.9	С016—С015—Н015	119.8
C13—C14—C15	120.2 (2)	C015—C016—C011	120.0 (2)
C13—C14—H14	119.9	С015—С016—Н016	120.0
C15—C14—H14	119.9	С011—С016—Н016	120.0
C14—C15—C16	120.3 (2)	C03—C031—H54	109.7 (13)
C14—C15—H15	119.9	C03—C031—H55	108.9 (15)
C16—C15—H15	119.9	H54—C031—H55	109 (2)
C11—C16—C15	119.3 (2)	C03—C031—H56	114.2 (15)
C11—C16—H16	120.3	H54—C031—H56	108 (2)
C15—C16—H16	120.3	H55—C031—H56	108 (2)
N2—C21—C23	111.13 (17)	N02—C021—C023	110.53 (18)
N2—C21—C22	109.09 (17)	N02—C021—C022	109.35 (18)
C23—C21—C22	112.18 (19)	C023—C021—C022	112.72 (19)
N2-C21-H21	108.1	N02-C021-H021	108.0
C23—C21—H21	108.1	С023—С021—Н021	108.0
C22—C21—H21	108.1	С022—С021—Н021	108.0
C21—C22—H22A	109.5	C021—C022—H02A	109.5
C21—C22—H22B	109.5	С021—С022—Н02В	109.5
H22A—C22—H22B	109.5	H02A—C022—H02B	109.5
C21—C22—H22C	109.5	С021—С022—Н02С	109.5
H22A—C22—H22C	109.5	H02A—C022—H02C	109.5
H22B—C22—H22C	109.5	H02B—C022—H02C	109.5
C21—C23—H23A	109.5	C021—C023—H02D	109.5
C21—C23—H23B	109.5	С021—С023—Н02Е	109.5
H23A—C23—H23B	109.5	H02D—C023—H02E	109.5
C21—C23—H23C	109.5	C021—C023—H02F	109.5
H23A—C23—H23C	109.5	H02D-C023-H02F	109.5
H23B—C23—H23C	109.5	H02E—C023—H02F	109.5
С3—С31—Н60	111.4 (17)	C04—C041—H57	110.4 (15)
C3—C31—H61	111.4 (16)	C04—C041—H58	110.7 (15)
H60—C31—H61	107 (2)	H57—C041—H58	107 (2)
C3—C31—H62	111.2 (17)	C04—C041—H59	110.7 (17)
H60—C31—H62	113 (2)	H57—C041—H59	110 (2)
H61—C31—H62	102 (2)	H58—C041—H59	108 (2)

С4—С41—Н63	112.5 (18)	N05-C051-C053	110.09 (18)
C4—C41—H64	113.4 (19)	N05—C051—C052	110.38 (18)
H63—C41—H64	107 (2)	C053—C051—C052	112.08 (19)
С4—С41—Н65	111.2 (17)	N05—C051—H051	108.1
H63—C41—H65	104 (2)	С053—С051—Н051	108.1
H64—C41—H65	108 (2)	С052—С051—Н051	108.1
С51—С53—Н53А	109.5	С051—С052—Н05А	109.5
С51—С53—Н53В	109.5	С051—С052—Н05В	109.5
Н53А—С53—Н53В	109.5	H05A—C052—H05B	109.5
С51—С53—Н53С	109.5	С051—С052—Н05С	109.5
Н53А—С53—Н53С	109.5	Н05А—С052—Н05С	109.5
H53B—C53—H53C	109.5	H05B—C052—H05C	109.5
С51—С52—Н52А	109.5	С051—С053—Н05D	109.5
С51—С52—Н52В	109.5	С051—С053—Н05Е	109.5
Н52А—С52—Н52В	109.5	H05D—C053—H05E	109.5
С51—С52—Н52С	109.5	C051—C053—H05F	109.5
H52A—C52—H52C	109.5	H05D—C053—H05F	109.5
H52B—C52—H52C	109.5	H05E—C053—H05F	109.5
$C_{3}N_{2}C_{1}N_{5}$	0.0.(2)	C04N05C01N02	0.8(2)
$C_{21} = N_{2} = C_{1} = N_{5}$	174.43(16)	C_{051} N05 C_{01} N02	179.71(18)
$C_{21} = N_{2} = C_{1} = N_{3}$	-0.5(2)	C03 - N02 - C01 - N02	-0.6(2)
$C_{1} = N_{2} = C_{1} = N_{2}$	178 39 (16)	$C_{03} = 102 = C_{01} = 103$	-179.25(17)
$C_1 = N_2 = C_3 = C_4$	178.39(10)	$C_{021} = N_{02} = C_{01} = N_{03}$	0.2(2)
$C_1 = N_2 = C_3 = C_4$	-174.03(17)	C01 - N02 - C03 - C04	(2)
$C_{1} = N_{2} = C_{3} = C_{4}$	-175.03(17)	$C_{021} = N_{02} = C_{03} = C_{03}$	178.83(18)
$C_1 = N_2 = C_3 = C_3 I$	95(3)	C01 - N02 - C03 - C031	-25(3)
$N_2 = C_3 = C_4 = N_5$	-0.8(2)	N02_C03_C04_N05	2.3(3)
$C_{31} - C_{3} - C_{4} - N_{5}$	175 3 (2)	$C_{031} C_{03} C_{04} N_{05}$	-1782(2)
$N_{2} = C_{3} = C_{4} = C_{41}$	178.8 (2)	N02_C03_C04_C041	-179.7(2)
$C_{31} - C_{3} - C_{4} - C_{41}$	-52(4)	$C_{031} - C_{03} - C_{04} - C_{041}$	19.7(2)
C1 - N5 - C4 - C3	0.8(2)	C01-N05-C04-C03	-0.6(2)
$C_{1} = N_{5} = C_{4} = C_{3}$	-178.09(17)	C_{051} N05 C_{04} C03	-17954(18)
C1 - N5 - C4 - C41	-178.78(19)	C01 - N05 - C04 - C041	179.32 (19)
$C_{1} = N_{5} = C_{4} = C_{4}$	2 3 (3)	C_{051} N05 C_{04} C_{041}	0.4(3)
$C_1 = N_5 = C_5_1 = C_5_2$	2.5(3)	021 - 82 - 0011 - 0016	-136.91(17)
$C_1 = N_2 = C_{21} = C_{22}$	-81 A (2)	021 - 52 - 0011 - 0016	102.86(18)
$C_{1} = N_{5} = C_{51} = C_{52}$	-24.4(3)	022 - 52 - 0011 - 0016	-16.26(18)
$C_1 = N_2 = C_{23} = C_{23}$	24.4(3)	023 - 52 - 0011 - 0010	10.20 (10) 45 03 (19)
012 81 011 012	134.31(17)	021 - 52 - 0011 - 0012	$-75\ 20\ (19)$
012 - 51 - C11 - C12	-117.36(17)	022 - 32 - 011 - 012	165 67 (16)
013 = 31 = 011 = 012	2 15 (19)	$C_{23} = S_{2} = C_{011} = C_{012}$	105.07(10) 1.5(3)
$012 \ 81 \ C11 \ C16$	-56.32(19)	$C_{010} = C_{011} = C_{012} = C_{013}$	1.3(3)
012-51-011-016	50.52(17)	C_{011} C_{012} C_{013} C_{014}	-1.3(3)
013 - 51 - 011 - 010	-176.98(17)	C012 C013 C014 C015	1.3(3)
$C_{16} = C_{11} = C_{12} = C_{13}$	1/0.38(17)	C012 - C013 - C014 - C015	0.1(3)
S1_C11_C12_C13	-178 59 (15)	C014 - C015 - C016 - C010	-0.6(3)
$C_{11} = C_{12} = C_{13} = C_{14}$	-0.4(3)	C012 - C011 - C016 - C015	-0.5(3)
C12 - C13 - C14 - C15	-0.4(3)	\$2C011C016C015	-178.60(15)
$C_{12} - C_{13} - C_{14} - C_{15} - C_{16}$	11(4)	C_{01} N_{02} C_{021} C_{023}	-203(2)
015 -017-015-010	1.1 (7)	01 -1102-0021-0025	27.5 (S)

C12—C11—C16—C15	0.1 (3)	C03—N02—C021—C023	152.33 (18)
S1-C11-C16-C15	179.28 (18)	C01—N02—C021—C022	95.4 (2)
C14—C15—C16—C11	-1.0 (4)	C03—N02—C021—C022	-83.0 (2)
C1—N2—C21—C23	27.3 (3)	C01-N05-C051-C053	-87.7 (3)
C3—N2—C21—C23	-159.08 (18)	C04—N05—C051—C053	91.0 (2)
C1—N2—C21—C22	-96.9 (2)	C01-N05-C051-C052	36.5 (3)
C3—N2—C21—C22	76.7 (2)	C04—N05—C051—C052	-144.70 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
C1—H1…O11 ⁱ	0.95	2.30	3.198 (3)	157
С01—Н01…О13	0.95	2.25	3.040 (3)	141
C021—H021···O23 ⁱⁱ	1.00	2.56	3.297 (3)	131
C022—H02B…O12	0.98	2.57	3.452 (3)	150
C13—H13···O22 ⁱⁱⁱ	0.95	2.55	3.245 (2)	130
С052—Н05В…О13	0.98	2.41	3.323 (3)	155
C23—H23B…O11 ⁱ	0.98	2.38	3.324 (3)	162

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*, *z*+1.

